Metabolic Stress

Chapter 25

- Balance between prevention of PEM and complications of nutrition support
- Consider status prior to illness, level of injury, current metabolic changes

• Assessment

- Many standard measures not valid or reliable
- Family members important source of information
- Measured weight and visceral protein status may be affected by fluid balance
- Indirect calorimetry most accurate for estimating energy requirements

• Assessment

- Energy estimates equations
 - Mifflin-St. Jeor or Harris-Benedict
 - Use stress and injury factors
 - Initial caloric goals: 25-35 kcal/kg
- Protein
 - 1.2-1.5 g protein/kg
- "Permissive underfeeding"
 - 14 kcal/kg, 1.2 g protein/kg

TABLE 25.4

Calculation of Energy and Protein Requirements: Activity and Stress Factors for Hypermetabolic Conditions

To calculate total energy requirements for the hospitalized patient: REE (Resting Energy Expenditure) \times Activity Factor \times Injury Factor

Harris Benedict Equation

REE for females = 655.1 + 9.6 W + 1.9 H - 4.7 A

REE for males = 66.5 + 13.8 W + 5.0 H - 6.8 A

[W = weight in kg; H = height in cm; A = age in years]

Mifflin-St. Jeor Equation

Females: 10 W	+ 6.25 Ht -	- 5 Age — 161	
Males 10 W +	6 25 Ht - 5	Age + 5	

```
[W = weight in Kg; Ht = height in cm; and Age = age in years]
```

Activity Factors	Average Injury Factors	
Out of bed 1.2	Surgery 1.0—1.3	
Confined to bed 1.1	Infection 1.0-1.4	
	Skeletal trauma 1.2–1.4	
	Head Injury 1.5	
Protein Requirements		
RDA 0.8 g protein/kg		
Minor surgery 1–1.1 g protein/kg		
Major surgery 1.2–1.5 g protein/kg		

Burn 1.5-2.0 g protein/kg

© 2007 Thomson Higher Education

- Oral preferred route
- Early initiation of nutrition support with specific dg
- First consider enteral
- Specialty formulas available

© 2007 Thomson Higher Education

TABLE 25.5

Enteral Formulas in Metabolic Stress

Formula/Manufacturer/ Basic Nutrition Information	Carbohydrate Source	Protein Source	Lipid Source	Rationale for Metabolic Stress
Pivot [©] (Ross) Caloric Density: 1.5 kcal/mL Osmolality: 595 mOsm/kg water	46% (corn syrup solids)	25% partially hydrolyzed sodium caseinate, whey protein hydrolysate	Structured lipid (interesterified sardine oil and medium chain triglycerides), soy oil, canola oil	Arginine—13 g/L; glutamine (inherent): 6.5 g/L; omega-3 fatty acids (EPA, 2.6 g/L; DHA: 1.3 g/L); fructooligosaccharides (FOS) and increased antioxidants
Crucial [©] (Nestle) Caloric Density: 1.5 kcal/mL Osmolality: 375 mOsm/kg water	36% (maltodextrin)	25% (hydrolyzed casein with added amino acid fortification)	Marine oil, MCT, and soybean oil	n6:n3 ratio of 1.5:1; fortified with arginine, vitamin C, A, zinc and beta-carotene
Impact [©] (Novartis) Caloric Density: 1.0 kcal/mL Osmolality: 375 mOsm/kg water	53% (hydrolyzed cornstarch)	22% (sodium and calcium caseinates, L-arginine 12.5 g/L)	25% (palm kernel oil, sunflower oil, menhaden oil)	EPA/DHA: 1.7 g/L; n-6 : n-3 ratio: 1.4:1.0; fortified with arginine—also available with added fiber
Impact Glutamine [©] (Novartis) Caloric Density: 1.3 kcal/mL Osmolality: 630 mOsm/kg water	46% (maltodextrin)	24% (wheat protein hydrolysate, free amino acids, sodium caseinate)	30% (palm kernel oil, menhaden oil, sunflower oil)	Glutamine: 15 g/L; L-arginine: 16.3 g/L; dietary nucleotides: 1.6 g/L; n-6: n-3 ratio: 1.4:1.0; added probiotic with soy and hydrolyzed guar gum
Periative [©] (Ross) Caloric Density: 1.3 kcal/mL Osmolality: 460 mOsm/kg water	55% (corn maltodextrin)	20.5% (partially hydrolyzed sodium caseinate, hydrolyzed lactalbumin)	Canola oil, MCT	.6 g of FOS/8 fl oz (6.5 g/L and 9.8 g/ 1,500 mL); fortification with arginine

© 2007 Thomson Higher Education

- Supplemental nutrients to consider:
 - Arginine, glutamine
 - Branched-chain amino acids: isoleucine, leucine, valine
 - Omega-3 fatty acids
 - Modify type of lipid; menhaden oil, marine oil, structured lipids
 - Sources of fiber
 - Probiotics, prebiotics, synbiotics

- Complications of enteral include
 - Hyperglycemia
 - Electrolyte imbalances
 - Aspiration
 - Mechanical complications

- Total parenteral nutrition (TPN)
 - Reserved for NPO status, if enteral access not viable or unable to meet needs (volume)
 - Hyperglycemia most critical concern
 - Other concerns: catheter occlusion, infection, hyprtriglyceridemia, intestinal atrophy, electrolyte disturbances, refeeding syndrome

- Tissue injury caused by exposure to heat, chemicals, radiation, or electricity
- Depth of wound and body surface are used to classify
 - Superficial
 - Superficial partial thickness
 - Deep partial thickness
 - Full thickness
 - See Table 25.6

TABLE 25.6

Characteristics of Burns Based on Depth

Classification	Cause	Characteristics			
		Appearance	Sensation	Healing Time	Scarring
Superficial	Ultraviolet light, very short flash (flame exposure)	Dry and red; blanches with pressure	Painful	3 to 6 days	None
Superficial partial-thickness	Scald (spill or splash), short flash	Blisters; moist, red and weeping; blanches with pressure	Painful to air and temperature	7 to 20 days	Unusual; potential pigmentary changes
Deep partial-thickness	Scald (spill), flame, oil, grease	Blisters (easily unroofed); wet or waxy dry; variable color (patchy to cheesy white to red); does not blanch with pressure	Perceptive of pressure only	More than 21 days	Severe (hypertrophic) risk of contracture
Full-thickness burn	Scald (immersion), flame, steam, oil, grease, chemical, high-voltage electricity	Waxy white to leathery gray to charred and black; dry and inelastic; does not blanch with pressure	Deep pressure only	Never (if the burn affects more than 2% of the total surface area of the body)	Very severe risk of contracture

- Rule of "Nines" used to estimate BSA
 - Used in assessment of extent of injury, basis for fluid and medication recommendations

© 2007 Thomson Higher Education

- Pathophysiology
 - Excessive inflammatory process
 - Rapid fluid shifts and accumulation
 - Fluid loss from wound
 - Metabolic stress; hypermetabolism, catabolism, immune, hormonal response
 - Respiratory complications

• Treatment

- Topical agents
- Clean, debride, dress wounds
- Skin grafting

• Nutrition Therapy/ Implications

- 20% body protein can be lost
- Fluid imbalance, pain, immobility
- Wound healing requires optimum nutrition
- Weight fluctuations (d/t fluid shifts and resuscitation)

Nutrition Therapy/ Assessment

- Estimate energy using indirect calorimetry
- Curreri equation can be used at peak of burn injury
 - Needs do not increase beyond 50-60% total body surface area burn
- Mifflin-St. Jeor equation with injury factor 1.3-1.5
- Energy needs increase with fever, infection, sepsis

- Nutrition Therapy/ Assessment
 - Protein 1.5-2 g protein/kg
 - Negative nitrogen balance may not be totally prevented
 - Set goal to minimize losses and promote wound healing

• Nutrition Therapy/ Interventions

- Nutrition support enteral
 - Early feeding associated with prevention of infections and Curling's ulcer, and reduction in protein catabolism
 - Focus on higher protein (20-25% of kcal)
 - Supplemental arginine, glutamine, omega-3 fatty acids
- PN if enteral cannot meet needs

- Nutrition Therapy/ Interventions
 - Nutrition support PN
 - Avoid overfeeding, control hyperglycemia
 - Oxandrolone (anabolic steroid)
 - Used to promote protein synthesis
 - Additional vitamins, minerals, trace elements
 - Vitamins C, A, E, zinc routinely used
 - Wean from nutrition support when pt. can meet at least 60% of needs orally

© 2007 Thomson Higher Education

Surgery

• Nutritional implications if...

- Patient enters surgery malnourished or overnourished
- Surgery will interrupt normal nutrition processes
- Preoperative changes in weight, albumin, CRP

Surgery

• Clinical manifestations... depend on type of procedure

- 12 hours pre-op NPO
- May have nasogastric tube
- Anesthesia may result in postop. ileus (lack of motility), general paralysis of GI tract
- PO resumed with bowel sounds and gas production

Surgery

- Nutrition Implications/ Interventions
 - Post-operative metabolic stress
 - Progression for postoperative feeding individualized
 - NPO to solid foods as quickly as possible
 - Individualize energy and protein using REE and activity and injury factors
 - Nutrition support if NPO prolonged